# Distributed Data Mining for Earth and Space Science Applications

R. Chen, C. Giannella, Krishnamoorthy
Sivakumar, Hillol Kargupta
Collaborators: Kirk Borne, Ranga Myneni, Ashok
Srivastava

Speaker: Hillol Kargupta
University of Maryland Baltimore County and AGNIK, LLC
http://www.cs.umbc.edu/~hillol
http://www.agnik.com, hillol@cs.umbc.edu

### Roadmap

- Introduction
- Distributed data mining:
  - Overview
  - Distributed Bayesian network learning
  - Distributed decision tree learning
- Applications
  - Mining NASA DAO and NOAA data
  - Mining distributed virtual observatories
- Conclusions and future work

#### Overview

- Goal: Analyzing distributed heterogeneous data by properly utilizing distributed resources.
- Contributions:
  - Distributed computation of
    - Statistical aggregates
    - Decision trees
    - Bayesian networks.
  - Algorithms for monitoring distributed data streams.
  - Mining NASA/NOAA AVHRR data and the virtual observatory data.



#### **Broader Impacts**

- Mining Databases from distributed sites
  - Counter-terrorism, bioinformatics
- Monitoring Multiple time critical data streams
  - Monitoring vehicle data streams in real-time
  - Onboard science
- Analyzing Lightweight sensor webs
  - Limited network bandwidth
  - Limited power supply
- Preserving privacy
  - Security/Safety related applications

### Why Bother?

| x1 | x2 |
|----|----|
| 4  | 1  |
| 4  | 5  |
| 6  | 8  |
| 1  | 4  |
| 7  | 1  |

| x1 | x3 |
|----|----|
| 4  | 5  |
| 1  | 6  |
| 5  | 9  |
| 2  | 10 |
| 7  | 4  |

| <b>x</b> 1 | x2  | x3  |
|------------|-----|-----|
| 4          | 1   | 5   |
| 4          | 5   | 5   |
| 1          | 4   | 6   |
| 7          | 1   | 4   |
| •••        | ••• | ••• |

- (Left) Data table at site 1.
- (Middle) Data table at site 2.
- (Right) Joined data table (based on the shared feature  $x_1$ ) needed for centralized data mining systems.
- Problems:
  - Construction of the join is computationally expensive
  - Supporting repeated queries (e.g. for streams) may be too expensive for the communication-bandwidth.

## Mining a Network of Virtual Observatories

- The Sloan Digital Sky Survey (SDSS) and the 2MASS All-Sky Survey.
- Five filters from SDSS and three filters from 2MASS.
- Analyze data from SDSS and 2MASS:
  - Cluster the set of objects using attributes from both the observatories
  - Identify outliers
  - Learn classifiers

## Distributed Randomized Inner Product Computation



- Site 1 computes Z<sub>1k</sub>
  - $Z_{1k}=A1.J_1+..+An.J_n$
  - $J_i \in \{+1,-1\}$  with uniform probability
- Site 2 calculates Z<sub>2k</sub>Z<sub>2k</sub>=B1.J<sub>1</sub>+..+Bn.J<sub>n</sub>
- Compute z<sub>1k</sub>.z<sub>2k</sub> for a few times and take the average

# Relative Error vs. Communication Cost



## Decision Tree Induction From Vertically Partitioned Distributed Data



## Heterogeneous DDM and Decision Trees

- Distributed Randomized Inner Product (DRIP) computation
- Computing information gain using DRIP.
- Information gain computation can be posed as an inner product computation problem.

# Information Gain Computation and DRIP



Information\_Gain(Temp\_high,Humidity) = ?

#### Experimental Results



### Distributed BN Learning

A Bayesian network (BN) is a probabilistic graph model.

■ Two problems: Structure and Parameter

learning.



### Collective BN Learning



# NASA DAO/NOAA AVHRR Pathfinder Data Model

Multi-dimensional time series data



### Preprocessing

- Feature Selection
- Data Coordination
- Clustering: Segment grid points into local homogenous regions.
- Z score normalization
- Quantization

#### Feature Selection

- We used as many features as possible.
- Features with following characteristics were dropped.
  - Many missing values
  - Multi-layer features
  - Almost deterministic features
- Used 15 DAO and 7 NOAA features

#### NASA DAO features

| In | dex | <b>Feature</b> | Description                                |
|----|-----|----------------|--------------------------------------------|
|    | 1   | Cldfrc         | 2-dimensional total cloud fraction         |
|    | 2   | Evaps          | Surface evaporation                        |
|    | 3   | Olr            | outgoing longwave radiation                |
|    | 4   | Osr            | outgoing shortwave radiation               |
|    | 5   | Pbl            | planetary boundary layer depth             |
|    | 6   | preacc         | total precipitation                        |
|    | 7   | gint           | precipitable water                         |
|    | 8   | radlwg         | net upward longwave radiation at ground    |
|    | 9   | radswg         | net downward shortwave radiation at ground |
|    | 10  | t2m            | temperature at 2 meters                    |
|    | 11  | tg             | Ground temperature                         |
|    | 12  | ustar          | Surface stress velocity                    |
|    | 13  | vintuq         | vertically averaged uwnd*sphu              |
|    | 14  | vintvq         | vertically averaged vwnd*sphu              |
|    | 15  | winds          | Surface wind speed                         |

#### NOAA features

| In         | dex Feature   | Description                              |
|------------|---------------|------------------------------------------|
| <u> </u>   | 5 asfts       | Absorbed Solar Flux total/day            |
| <b>1</b> 7 | 7 olrcs day   | Outgoing Long Wave Radiation clear/day   |
| <b>1</b> 8 | 3 olrcs night | Outgoing Long Wave Radiation clear/night |
| <u> </u>   | olrts day     | Outgoing Long Wave Radiation total/day   |
| <u> </u>   | olrts night   | Outgoing Long Wave Radiation total/night |
| _ 2        | L tcf day     | Total Fractional Cloud Coverage day      |
| <u> </u>   | 2 tcf night   | Total Fractional Cloud Coverage night    |

# Feature Cldfrc in March (left) and August (right), 1983



#### Coordination and Clustering

- Coordination: re-grid the NOAA dataset into DAO format.
- Spatio-temporal Clustering: Segment datasets into local homogenous regions in spatial and temporal domain.
- Each cluster is modeled using a Bayesian network.

#### Spatio-temporal Clustering

- Temporal clustering: choose same month data.
- Spatial clustering
  - Average the data from same month. Get one frame of data in spatial domain.
  - Clustering: k-mean, fuzzy c-mean, and EM.

### Clustering Results: DAO



### Clustering Results: NOAA



### Quantization Results



# Bayesian network Learning Results

- Compare the Bayesian Networks:
  - B<sub>cntr</sub> learnt using centralized method.
  - B<sub>coll</sub> learnt using collective method.
- Metric: structure error = Number of missing links + Number of extra links.

# Result B<sub>cntr</sub> – 64 local links and 9 cross links.



# Some of the Cross Links Between NOAA and DAO Attributes

- Surface evaporation, Absorbed Solar Flux total/day
- outgoing longwave radiation, Absorbed Solar Flux total/day
- outgoing longwave radiation, Outgoing Long Wave Radiation clear/day
- outgoing longwave radiation, Outgoing Long Wave Radiation clear/night
- precipitable water, Absorbed Solar Flux
- temperature at 2 meters, Outgoing Long Wave Radiation clear/day
- temperature at 2 meters, Outgoing Long Wave Radiation clear/night
- Ground temperature, Absorbed Solar Flux total/day
- Ground temperature, Outgoing Long Wave Radiation total/night

#### NASA DAO/NOAA Structure Learning Results



## Applications in Mobile Sensor Networks: Vehicle Data Stream Mining

#### On-board Module:

- Continuous data streams from the vehicle data bus
- Onboard data stream mining
- Communicates with a remote control station
- Privacy management

#### Central control station:

- Data Management
- Data mining
- Communicates with the on-board modules over wireless networks
- Privacy management



#### Conclusions

- Distributed data mining: A new way to do data mining in distributed environments
- Applications in mining,
  - Large distributed collection of repositories
  - Bandwidth/power constrained sensor networks
  - Privacy-sensitive multi-party data
  - Scalable time-critical analysis of data streams from different sources

#### Web site

http://www.cs.umbc.edu/~hillol/nasap.html

#### Selected Publications

- Kargupta, H. and Park, B. (2004). A Fourier Spectrum-Based Approach to Represent Decision Trees for Mining Data Streams in Mobile Environments. IEEE Transaction on Knowledgeand Data Engineering, Volume 16, Number 2, pages 216--229.
- Chen, R., Sivakumar, K., and Kargupta, H. Collective Mining of Bayesian Networks from Distributed Heterogeneous Data. (accepted) Knowledge and Information Systems, 2002.
- Chen, R. and Sivakumar, K. A New Algorithm for Learning Parameters of a Bayesian Network from Distributed Data. (To appear) Proceedings of the IEEE International Conference on Data Mining, 2002, IEEE Press.
- Chen, R., Siyakumar, K., and Kargupta, H. Distributed Web Mining using Bayesian Networks from Multiple Data Streams. Proceedings of the IEEE International Conference on Data Mining, 75--82. IEEE Press.
- Chen, R., Sivakumar, K., and Kargupta, H. An Approach to Online Bayesian Learning from Multiple Data Streams, Proceedings of the Workshop on Mobile and Distributed Data Mining, PKDD2001.
- Kargupta, H. and Park, B. Mining Decision Trees from Data Streams in a Mobile Environment. Proceedings of the IEEE International Conference on Data Mining, 281--288. IEEE Press.
- Park, B. and Kargupta, H. Constructing Simpler Decision Trees from Ensemble Models Using Fourier Analysis, Proceedings of ACM SigMod DMKD'02 Workshops, Madison, WI (To appear).
- Ayyagari, R. and Kargupta, H. A Resampling Technique for Learning the Fourier Spectrum of Skewed Data, Proceedings of ACM SigMod DMKD'02 Workshops, Madison, WI (To appear).

#### Preprocessing

- Clustering: Chose a cluster that roughly corresponds to the rectangular region from (170W, 60S) to (90W, 0)  $d_z = \frac{d \mu}{\sigma}$
- Z score normalization
- Quantization: Discretize the continuous feature value into discrete levels based on its histogram.
- After above steps, we get 12 datasets, one for each month (aggregated over years 1983-1992).

### Quantization Results



